基于特征工程与级联森林的中风患者手部运动肌电识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13973/j.cnki.robot.200588

基于特征工程与级联森林的中风患者手部运动肌电识别方法

引用
针对基于表面肌电(sEMG)信号的中风患者运动意图识别率低的问题,提出了一种高识别率且适用于不同康复等级患者的手部运动意图识别方法.首先,使用30名不同康复等级患者的表面肌电数据进行了基于tsfresh库的特征提取和基于Feature-Selector库的特征选择,确定了最合适的滑动窗参数及适合患者运动识别任务的特征.然后,使用该方法进行动作识别实验,并和随机森林、卷积神经网络等方法比较,实验结果表明该方法对9种常用手部康复动作的平均识别精度为97.94%.最后,基于该方法开发了手部康复系统,通过在线识别实验分析了系统的实时性,并设计了患者跟踪实验以验证系统对患者手部康复的有效性.

表面肌电信号;脑卒中;动作分类;人机交互;深度森林

43

TP242(自动化技术及设备)

国家自然科学基金;中国博士后科学基金;辽宁省自然科学基金;辽宁省"兴辽英才计划"高水平创新创业团队

2021-11-05(万方平台首次上网日期,不代表论文的发表时间)

共13页

526-538

相关文献
评论
暂无封面信息
查看本期封面目录

机器人

1002-0446

21-1137/TP

43

2021,43(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn