基于多种群协同进化算法的绳索牵引并联机器人末端位置误差补偿
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13973/j.cnki.robot.200054

基于多种群协同进化算法的绳索牵引并联机器人末端位置误差补偿

引用
对于绳索牵引并联机器人来说,影响其末端位置精度的模型不确定性主要包括几何参数误差和非几何参数误差.这两种不同类型的误差具有非常强的非线性且相互耦合,难以通过传统的标定手段来进行参数标定.针对这一问题,提出了一种基于神经网络的末端位置误差补偿方法.将两种不同类型的参数误差等效视作伪误差,通过神经网络来逼近伪误差造成的末端位置误差曲线,建立末端位置误差与绳索长度之间的映射关系,并在关节空间中进行位置误差补偿.为了提高神经网络的拟合精度,设计了基于多种群协同进化算法和反向传播算法的神经网络优化方法,该优化方法能够同时优化网络的权值、阈值和结构,提高神经网络的泛化能力和拟合精度.在实际3自由度绳索牵引并联机器人上进行了位置误差补偿实验,结果表明补偿后的位置误差均值从6.64 mm下降到1.08 mm,轨迹误差均值从7.5 mm下降到1.6 mm,末端位置的精度得到了显著提高.

绳索牵引并联机器人、位置误差补偿、伪误差理论、多种群协同进化算法

43

TP27(自动化技术及设备)

国家自然科学基金51675501,51275500

2021-02-03(万方平台首次上网日期,不代表论文的发表时间)

共9页

81-89

相关文献
评论
暂无封面信息
查看本期封面目录

机器人

1002-0446

21-1137/TP

43

2021,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn