机舱空气质量检测中的压力补偿方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-1158.2020.11.21

机舱空气质量检测中的压力补偿方法

引用
飞机座舱气压变化范围较大,对气体传感器产生较大影响,导致空气质量检测结果不准确,提出采用RBF神经网络进行气压补偿.首先设计试验系统;然后对HCHO、CO、C02和NO2共4种典型的座舱空气质量检测气体传感器进行正负压试验,采集试验数据并绘制各气体的特征变化曲线;最后建立了以12个气压点和测量值为输入、期望值为输出的3层RBF神经网络模型,并对试验数据进行了误差修正补偿.结果 表明:采用该RBF神经网络补偿算法,HCHO、CO、CO2、N02气体传感器的最大相对误差分别由32.85%、28.42%、52.87%、87.18%降低到2.001%、3.668%、2.392%、12.68%,达到较好的补偿效果.

计量学、空气质量检测、气压补偿、飞机座舱、气体传感器、RBF神经网络

41

TB99;X851(计量学)

民航科技项目MHRD20150220

2020-12-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

1443-1448

相关文献
评论
暂无封面信息
查看本期封面目录

计量学报

1000-1158

11-1864/TB

41

2020,41(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn