基于YOLOv3改进的用户界面组件检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13229/j.cnki.jdxbgxb20200058

基于YOLOv3改进的用户界面组件检测算法

引用
针对传统方法识别用户界面(UI)组件时,无法进行组件分类的问题,本文提出了基于经典目标检测算法YOLOv3改进的算法用于UI组件检测任务,包括识别和分类.特征提取网络采用DenseNet紧密连接结构使提取到的特征能够充分使用;在特征提取网络中加入通道注意力机制和空间注意力机制,使用加权的特征代替原来的特征用于后面的特征融合;构造4个维度的特征金字塔网络完成组件检测任务;使用Focalloss作为分类损失函数.在收集的真实UI数据集上进行实验,实验结果表明:在检测精度上,本文方法的召回率达到了91.97%,平均精度mAP达到了48.21%,相比传统检测方法,本文方法具有更好的性能.

计算机应用、组件检测、注意力机制、焦损失函数

51

TP391.4(计算技术、计算机技术)

吉林省产业创新专项项目;国家自然科学基金

2022-06-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

1026-1033

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(工学版)

1671-5497

22-1341/T

51

2021,51(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn