基于自适应惩罚的潜变量高斯图模型结构学习
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13413/j.cnki.jdxblxb.2023010

基于自适应惩罚的潜变量高斯图模型结构学习

引用
采用 自适应惩罚似然方法解决含潜变量高斯图模型的结构学习问题.模拟结果表明,自适应惩罚显著优于非自适应惩罚,可有效降低估计偏差,更准确地估计给定潜变量时观测变量间的条件独立性关系.

潜变量高斯图模型、自适应LASSO惩罚、自适应核范数惩罚、交替方向乘子法

61

O21(概率论与数理统计)

国家自然科学基金;国家自然科学基金;吉林省自然科学基金

2023-10-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

1056-1062

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

61

2023,61(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn