基于BERT-GCN的因果关系抽取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13413/j.cnki.jdxblxb.2022021

基于BERT-GCN的因果关系抽取

引用
针对自然语言处理中传统因果关系抽取主要用基于模式匹配的方法或机器学习算法进行抽取,结果准确率较低,且只能抽取带有因果提示词的显性因果关系问题,提出一种使用大规模的预训练模型结合图卷积神经网络的算法 BERT-GCN.首先,使用 BERT(bidirectional encoder representation from transformers)对语料进行编码,生成词向量;然后,将生成的词向量放入图卷积神经网络中进行训练;最后,放入 Softmax层中完成对因果关系的抽取.实验结果表明,该模型在数据集 SEDR-CE 上获得了较好的结果,且针对隐式的因果关系效果也较好.

自然语言处理、因果关系抽取、图卷积神经网络、BERT模型

61

TP391(计算技术、计算机技术)

国家自然科学基金;吉林省技术攻关项目;吉林省自然科学基金;吉林省自然科学基金

2023-03-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

325-330

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

61

2023,61(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn