基于Transformer的细粒度图像中文描述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13413/j.cnki.jdxblxb.2021389

基于Transformer的细粒度图像中文描述

引用
针对图像中文描述中传统循环神经网络(RNN)结构不利于生成长句、缺乏细节语义信息的问题,提出一种用Transformer多头注意力(multi-head attention,MHA)网络,融合粗粒度的全局特征和细粒度的区域目标实体特征方法.该方法通过多尺度特征的融合,使图像注意力更易聚焦于细粒度的目标区域,得到更具细粒度语义特征的图像表示,从而有效改善了图像描述.在数据集ICC上使用多种评价指标进行验证,结果表明,该模型在各项指标上均取得了更好的图像描述效果.

图像中文描述、细粒度特征、多头注意力

60

TP391(计算技术、计算机技术)

国家自然科学基金;全国高等院校计算机基础教育研究会项目

2022-10-11(万方平台首次上网日期,不代表论文的发表时间)

共10页

1103-1112

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

60

2022,60(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn