基于矩阵分解和聚类的协同过滤算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13413/j.cnki.jdxblxb.2018286

基于矩阵分解和聚类的协同过滤算法

引用
基于矩阵分解和聚类提出一种协同过滤推荐算法.先利用交替最小二乘(ALS)算法进行矩阵分解,再利用改进的k-均值聚类算法弥补单一ALS算法在后期协同过滤阶段产生的大计算量问题,解决了由于减小原始矩阵高维度、高稀疏性带来的推荐准确度较低的问题,极大提高了计算速度和推荐精度.实验结果表明,改进算法在推荐准确性上有明显提高.

矩阵分解、聚类、协同过滤、推荐准确性

57

TP301.6(计算技术、计算机技术)

国家自然科学基金61272209

2019-05-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

105-110

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

57

2019,57(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn