基于稀疏编码和机器学习的多姿态人脸识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13413/j.cnki.jdxblxb.2018.02.26

基于稀疏编码和机器学习的多姿态人脸识别算法

引用
为改善多姿态人脸识别效果,设计一种稀疏编码和机器学习相融合的多姿态人脸识别算法.首先对多姿态人脸进行采集和预处理,并提取基于稀疏编码的人脸图像特征;然后采用主成分分析对特征进行处理,降低多姿态人脸识别的特征维数,提高多姿态人脸识别效率;最后采用机器学习算法中的支持向量机建立多姿态人脸识别分类器,并采用标准人脸数据库和多姿态人脸数据库对算法性能进行验证.验证结果表明,该算法可有效提高多姿态人脸识别正确率,大幅度减少多姿态人脸的平均识别时间,取得了比对比算法更优的识别结果,从而验证了该算法的优越性.

多姿态人脸、识别算法、支持向量机、稀疏编码、主成分分析

56

TP39(计算技术、计算机技术)

吉林省教育厅科研项目2014317;吉林省科技厅科研项目20150203002SF

2018-05-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

340-346

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

56

2018,56(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn