一维Lagrange四次元有限体积法的超收敛性
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

一维Lagrange四次元有限体积法的超收敛性

引用
通过取等距节点四次Lagrange插值的导数超收敛点作为对偶单元的节点,取Lagrange 型四次有限元空间为试探函数空间,取相应于对偶剖分的分片常数函数空间为检验函数空间的方法,得到了求解两点边值问题的四次元有限体积法,证明了该方法具有最优的H1模和L2模误差估计,并讨论了对偶单元节点的导数超收敛估计.数值实验验证了理论分析结果.

两点边值问题、四次有限体积元法、导数超收敛点、误差估计

50

O241.82(计算数学)

黑龙江省青年自然科学基金QC2011C103;大庆师范学院青年基金09ZQ02

2012-09-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

397-403

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

50

2012,50(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn