基于YOLOv3的光学遥感图像目标检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/LOP202158.2028006

基于YOLOv3的光学遥感图像目标检测算法

引用
针对目前算法对遥感图像中背景复杂、目标小而密集的复杂场景下的目标检测精度低的问题,提出了一种基于YOLOv3的改进算法,在YOLOv3的基础上,结合了密集连接网络,利用密集连接块来提取深层特征,增强特征传播,同时引入Distance-IoU(DIoU) loss作为坐标预测的损失函数,使边界框的定位更加准确,此外针对目标间相互遮挡的情况,改进了传统的非极大值抑制算法,使用DIoU代替IoU来克服虚假抑制的问题.对所提算法在三个经典的遥感数据集上进行了测试,实验结果证明,所提方法具有更高的检测精度.

遥感、遥感图像、卷积神经网络、目标检测、YOLOv3网络、密集连接

58

TP753(遥感技术)

天津市自然科学基金重点项目;天津市科技计划;天津市科技计划

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

501-509

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn