基于NSCT与DWT的PCNN医学图像融合
针对医学图像融合过程中出现的细节损失严重、视觉效果不佳问题,提出了一种基于非下采样轮廓波变换(NSCT)与离散小波变换(DWT)的脉冲耦合神经网络(PCNN)医学图像融合算法.首先,利用NSCT处理医学源图像,得到相应的低频和高频子带,并利用DWT对得到的低频子带进行处理.然后,利用PCNN对低频子带进行融合,将平均梯度和改进型拉普拉斯能量和作为PCNN的输入项,将信息熵与匹配度结合实现对高频子的融合.最后,利用多尺度逆变换将低频子带和高频子带图像进行融合.实验结果表明,所提方法能够有效提升融合图像的对比度并保留源图像的细节信息,在主观和客观评价上均有优良的性能表现.
医用光学、图像融合、非下采样轮廓波变换、离散小波变换、脉冲耦合神经网络
58
TP391(计算技术、计算机技术)
2021-12-16(万方平台首次上网日期,不代表论文的发表时间)
共10页
445-454