基于双通道生成对抗网络的镜片缺陷数据增强
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/LOP202158.2015001

基于双通道生成对抗网络的镜片缺陷数据增强

引用
针对小样本条件下深度学习缺陷检测算法识别率较低的问题,提出一种基于双通道生成对抗网络的数据增强方法.由全局鉴别层和局部鉴别层两通道组成生成对抗网络,其中局部鉴别器可以增加缺陷类型的置信度损失,实现对局部信息的增强.采用所提方法在镜片缺陷图像数据集上进行实验.实验结果表明,所提方法的最近邻留一指标、最大均值差异和Wasserstein距离分别达到0.52、0.15和2.81;对于麻点、划痕、气泡和异物的缺陷类型图像,生成的图像质量优于条件生成对抗网络、Wasserstein距离生成对抗网络和马尔科夫判别器.双通道生成对抗网络生成的镜片图像有着多样性的全局信息和高质量的细节特征,可以有效增强镜片缺陷数据集.

机器视觉、神经网络、数据增强、生成对抗网络、缺陷检测、镜片缺陷、计算机视觉

58

TP391.9;TH165+.4(计算技术、计算机技术)

吉林省科技发展计划20200404157YY

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

348-356

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn