基于NSST与IFCNN的红外可见光图像融合算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/LOP202158.2010004

基于NSST与IFCNN的红外可见光图像融合算法

引用
针对在图像融合中存在边缘细节保留不够理想的问题,提出一种基于非下采样剪切波变换(NSST)与卷积神经网络图像融合框架(IFCNN)的红外可见光图像融合算法.首先将红外和可见光图像进行NSST分解.然后为了使低频子带图像更好地突出轮廓信息,使用相似性匹配的融合规则对图像进行融合;对高频子带图像使用IFCNN提取特征层,特征层通过L2正则化、卷积运算和最大选择策略处理可以得到最大权重图,根据最大权重图来确定高频融合规则.最后使用NSST逆变换得到最终的融合图像.实验结果表明,所提算法很好地保留图像的边缘及纹理等细节信息,减少伪影和噪声,具有良好的视觉效果.

图像处理、非下采样剪切波变换、红外与可见光图像、卷积神经网络、图像融合

58

TP391(计算技术、计算机技术)

长江学者和创新团队发展计划;国家自然科学基金;国家自然科学基金;甘肃省科技计划;甘肃省高等学校产业支撑计划;兰州市科技计划;兰州交通大学天佑创新团队项目;创新基金

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

110-118

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn