一种基于多尺度特征融合的目标检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/LOP202158.0215003

一种基于多尺度特征融合的目标检测算法

引用
基于深度学习的目标检测器RetinaNet和Libra RetinaNet均是使用特征金字塔网络融合多尺度特征,但上述两个检测器存在特征融合不充分的问题.鉴于此,提出一种多尺度特征融合算法.该算法是在Libra RetinaNet的基础上进一步扩展,通过建立两条自底向上的路径构建两个独立的特征融合模块,并将两个模块产生的结果与原始预测特征融合,以此提高检测器的精度.将多尺度特征融合模块与Libra RetinaNet结合构建目标检测器并在不同的数据集上进行实验.实验结果表明,与Libra RetinaNet检测器相比,加入模块后的检测器在PASCAL VOC数据集和MSCOCO数据集上的平均精度分别提高2.2个百分点和1.3个百分点.

机器视觉、卷积神经网络、目标检测、特征金字塔、特征融合

58

TP391.4(计算技术、计算机技术)

2021-04-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

286-292

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn