基于优化Inception V1的视频火焰超像素检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/LOP202158.0210004

基于优化Inception V1的视频火焰超像素检测方法

引用
针对传统火焰检测模型的检测准确度较低和速度慢等问题,提出一种优化的卷积神经网络和超像素分割算法的视频火焰区域检测方法.首先使用火焰图像数据集对模型进行训练和验证,采用卷积核堆叠替换的方法改进Inception模块的结构;其次采用小卷积核替换的方法改进网络的前端结构,并将Focal-Loss函数作为损失函数以提高模型的泛化能力;然后设计Inception V1模型的参数复杂度优化实验,生成优化的火焰检测网络结构;最后将超像素分割算法提取的火焰超像素语义信息输入优化的Inception V1模型中,并进一步执行视频火焰区域的定位检测.实验结果表明,所提方法能够增强视频火焰的非线性特征提取能力,火焰检测准确度高于96%,检测速度较原始模型提升2.66倍.

图像处理、火焰检测、卷积神经网络、卷积核堆叠替换、参数复杂度优化、超像素定位

58

TP391(计算技术、计算机技术)

陕西省重点研发计划;陕西省重点研发计划;青年科技基金

2021-04-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

68-77

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

58

2021,58(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn