一种改进的交通标志图像识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/LOP54.021001

一种改进的交通标志图像识别算法

引用
交通标志识别(TSR)系统是智能交通系统的重要研究方向.道路交通环境复杂、交通标志数据库规模庞大等因素导致在设计TSR系统可行性方案时必须考虑计算复杂度和识别率.提出了一种高效且快速的基于改进主成分分析(PCA)法和极限学习机(ELM)的TSR算法,被称为PCA-HOG.该算法首先提取交通标志数据库中每个交通标志的梯度方向直方图(HOG)特征,利用改进PCA算法对提取出的HOG特征进行降维处理,之后利用降维后的HOG特征进行ELM 模型训练,利用经过训练的ELM 模型识别测试图片.实验结果表明,基于PCAHOG和ELM 模型的交通标志识别算法获得的计算复杂度低,图像识别率可达97.69%.

图像处理、交通标志识别、特征提取、主成分分析降维、极限学习机

54

TP751.1(遥感技术)

国家自然科学基金;创新基金

2018-07-30(万方平台首次上网日期,不代表论文的发表时间)

共1页

021001.1-021001.8

相关文献
评论
暂无封面信息
查看本期封面目录

激光与光电子学进展

1006-4125

31-1690/TN

54

2017,54(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn