基于AdaBoost_SVM的轧机的状态评估
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-080x.2014.08.012

基于AdaBoost_SVM的轧机的状态评估

引用
为了解决大型轧机设备的早期状态评估难的问题,针对样本数量较少和质量不佳时ANN表现出的过学习和欠学习的现象,及传统的SVM多用于二分类的问题,提出了一种基于AdaBoost_SVM算法的轧机状态评估方法.通过AdaBoost算法连接多个SVM弱分类器,从而得到分类准确率更高的强分类器AdaBoost_SVM模型.该算法在轧机数据集上进行了测试,并且与传统的ANN算法、SVM算法进行了比较,实验结果表明AdaBoost_SVM算法具有更好的分类精度.

SVM算法、AdaBoost算法、状态评估、分类精度

20

TP2;TG3

2014-10-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

53-58

相关文献
评论
暂无封面信息
查看本期封面目录

机电一体化

1007-080X

31-1714/TM

20

2014,20(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn