基于VMD-LSTM模型的短期电力负荷预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19514/j.cnki.cn32-1628/tm.2024.01.004

基于VMD-LSTM模型的短期电力负荷预测研究

引用
经典的电力负荷预测方法,例如回归预测法、时间预测法、指数平滑法等结构过于简单、拟合精度较差,预测效果不明显.为了提高短期电力负荷预测的精确度,建立了一种将变分模态分解(VMD)和LSTM算法相组合的短期负荷预测模型(VMD-LSTM).使用VMD将原始负荷数据分解为数个有限带宽的模态分量,以降低原始负荷的复杂度,而且不会发生模态混叠现象,提高数据清晰度,然后每个模态分别构建一个LSTM模型进行预测,最后把每个分量的结果相加得到最终的预测值.通过仿真实验,将VMD-LSTM组合模型和其他几个单一模型进行比较,发现VMD-LSTM模型的预测精度更高,误差更小,能够更好地应用于短期电力负荷预测.

短期负荷预测、变分模态分解、LSTM、模态分量

TM715(输配电工程、电力网及电力系统)

2024-01-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

15-17,21

相关文献
评论
暂无封面信息
查看本期封面目录

机电信息

1671-0797

32-1628/TM

2024,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn