基于稀疏编码的短期风电功率时间序列预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7667/PSPC170765

基于稀疏编码的短期风电功率时间序列预测

引用
针对短期风电功率时间序列,提出一类基于字典的稀疏编码预测方法.为构建预测模型,将历史风电功率时间序列数据组成具有时延的输入-输出数据对,其输入与输出数据向量以原子形式分别构成两个字典,无需模型的训练阶段.针对待预测的时延输入数据向量,使用l1范数或弹性网络正则化的稀疏分解凸优化算法计算稀疏编码的权值,进一步借助历史输出数据所构成的字典,以得到相应的预测输出.与此同时,还分析了将测试数据实时加入字典,并维持字典容量不变的三种自适应更新策略,以进一步提升模型的预测精度.为了验证该方法的有效性,将不同的稀疏编码方法首先应用于Santa Fe混沌时间序列预测中,其次,将其分别应用于短期风电功率间接预测中,在同等条件下,与SVM方法进行了比较.结果表明,不同的稀疏编码方法均取得了很好的预测效果,其中基于弹性网络正则化的稀疏编码方法具有较高的预测精度,显示出其有效性.

稀疏编码、算法、弹性网络正则化、风电功率、预测

46

国家自然科学基金项目资助51467008;兰州交通大学优秀科研团队项目资助201701

2018-08-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

16-23

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

46

2018,46(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn