含有历史不良数据的电力负荷预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7667/PSPC162122

含有历史不良数据的电力负荷预测研究

引用
传统负荷预测算法在历史负荷序列无不良数据的条件下已能对短期负荷做出较为理想的预测.由于实际负荷数据在监测、集抄、存储过程中难免会产生错误或有所误差,此时仍依靠传统预测算法进行负荷预测,可能在某些时间节点会引起较大误差.为了解决此问题,提出含有历史负荷序列不良数据辨识与修正能力且能对负荷进行相似度预测及负荷偏差纠正的预测模型.通过运用实际电力负荷数据进行验证,该模型能较好地避免了不良数据的干扰,有效地提高了含有不良数据的历史负荷序列的预测精度.

短期负荷预测、不良数据辨识、相似度、神经网络

45

TM7;TP3

National Natural Science Foundation of China61602295;Natural Science Foundation of Shanghai No.16ZR1413100.国家自然科学基金61602295;上海市自然科学基金16ZR1413100

2017-10-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

62-68

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

45

2017,45(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn