基于最小二乘支持向量机的载流故障趋势预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-3415.2012.10.004

基于最小二乘支持向量机的载流故障趋势预测

引用
提出基于最小二乘支持向量机(LS-SVM)的电力设备载流故障趋势的预测算法,并采用粒子群优化(PSO)算法对其参数进行优化.采用主元分析法(PCA)对各触点温度序列进行特征分析,在温度分布异常的情况下提取故障的早期特征;以此时刻为起点,采用PSO与最小二乘支持向量机相结合的方法,并结合实时更新的现场温度信息,对载流故障发展的短期趋势和长期趋势分别进行预测.基于实际运行数据的实验结果表明,将长期预测时间裕量大与短期预测精度高的优势相结合,可以对载流故障的发展趋势做出较为准确的预测.

支持向量机、最小二乘法、粒子群优化、载流故障、温度预测

40

TM71(输配电工程、电力网及电力系统)

2012-07-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

19-23,29

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

40

2012,40(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn