基于经验模态分解和基因表达式程序设计的电力系统短期负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-3415.2011.03.009

基于经验模态分解和基因表达式程序设计的电力系统短期负荷预测

引用
提出将经验模态分解(EMD)和基因表达式程序设计(GEP)算法相结合的EMD&GEP预测法应用于电力系统短期负荷预测中,消除负荷样本中的伪数据,并对负荷样本序列进行经验模态分解得到不同频段的本征模态分量(IMF)和负荷剩余分量.运用基因表达式程序设计算法的灵活表达能力,把分解得到的不同频段的各负荷本征模态分量及负荷剩余分量中所对应的不同日、同一时刻的负荷序列作为样本,进行分时预测.把各负荷本征模态分量和负荷剩余分量中相对应的预测结果进行重构,作为各时刻负荷的最终预测值.EMD克服了小波分析中小波基选取困难的不足,结果表明各负荷本征模态分量能较准确反映负荷特征,而且经比较,EMD&GEP预测法比小波分析和GEP算法相结合的预测方法具有更好的预测效果.

短期负荷预测、经验模态分解、基因表达式程序设计、电力系统

39

TM715(输配电工程、电力网及电力系统)

2011-04-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

46-51

相关文献
评论
暂无封面信息
查看本期封面目录

电力系统保护与控制

1674-3415

41-1401/TM

39

2011,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn