10.3969/j.issn.1674-3415.2007.08.008
基于经验模式分解和最小二乘支持向量机的短期负荷预测
电力负荷是具有一定的周期性和随机性的非平稳时间序列,传统的预测方法是建立在负荷是平稳序列的前提下,难以精确的预测.为了进行有效的预测,提高预测精度,提出将经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)相结合对短期负荷进行预测.首先,运用EMD将负荷序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function),分解后的分量突出了原负荷的局部特征,能更明显地看出原负荷序列的周期项、随机项和趋势项;然后,根据各个IMF的变化规律,采用合适的核函数和超参数构造不同的LS-SVM进行预测,最后对各分量的预测值进行相加得到最终的预测值.仿真试验表明,此方法具有较高的精度和较强的推广能力.
经验模式分解、最小二乘支持向量机、负荷预测
35
TM715(输配电工程、电力网及电力系统)
2007-05-28(万方平台首次上网日期,不代表论文的发表时间)
共4页
37-40