高维小样本数据环境下基于SOA-SVM的机械故障分类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-3881.2021.18.036

高维小样本数据环境下基于SOA-SVM的机械故障分类研究

引用
针对现有SVM分类算法在高维小样本故障特征分类、适应度函数选择及核心参数优化方面存在的不足,提出一种基于SOA-SVM的机械故障分类算法.利用小波阈值函数对原始故障信号做降噪预处理,基于SOA算法模拟人群的几种随机行为,选择故障数据点最优的移动方向和移动步长,最后寻找到距离SVM分类器超平面几何距离最佳的位置,提升经典SVM分类器的故障数据分类性能.仿真结果表明:提出的故障分类算法具有更强的参数优化性能,在对多个高维小样本数据集的分类中可以获得更高的分类精度.

高维小样本;SOA-SVM算法;机械故障分类

49

TP391(计算技术、计算机技术)

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

183-187

相关文献
评论
暂无封面信息
查看本期封面目录

机床与液压

1001-3881

44-1259/TH

49

2021,49(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn