基于MFCC特征的被动水声目标深度学习分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3404/j.issn.1672-7649.2020.10.025

基于MFCC特征的被动水声目标深度学习分类方法

引用
基于深度学习的人工智能在语音识别技术取得了突破性的进展,为被动声呐目标分类提供了新思路.该文提出一种将一维卷积神经网络与长短时记忆网络融合的深度学习分类模型(Conv-LSTM),提取了被动声呐目标听觉感知特征——梅尔频率倒谱系数(MFCC),并将特征输入模型提取深度特征进行目标分类.试验结果表明,该模型相较卷积神经网络和长短时记忆网络具有更高的识别率.

听觉特征;深度学习;目标分类

42

TB56(声学工程)

2021-08-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

129-133

相关文献
评论
暂无封面信息
查看本期封面目录

舰船科学技术

1672-7649

11-1885/U

42

2020,42(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn