基于半监督机器学习的监所人员风险计算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1009-9875.2022.01.006

基于半监督机器学习的监所人员风险计算

引用
风险评估是当今社会各个行业都会涉及到的一个基础课题.在传统的风险评估算法研究中,大多关注风险点的前期事件和相关风险的前瞻,大部分认知风险是由日积月累的多种行为、特征组成.在公安监所人员风险评估工作中,人员风险也在日益的变化,通过暴力、健康、脱逃、自杀、心理、闹监六个维度对在押人员进行风险评估计算,并通过机器学习相关技术,进行特征提取和风险值计算,利用基于半监督机器学习框架支持向量机、K近邻、随机森林三种机器学习模型框架,训练六种机器学习数据模型,并随着监管数据的不断更新,模型也随之迭代,使预测的风险值更加准确.

风险评估预警模型;机器学习;半监督;支持向量机;K近邻;随机森林

2022-03-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

25-28

相关文献
评论
暂无封面信息
查看本期封面目录

警察技术

1009-9875

11-1645/D

2022,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn