基于机器学习算法的2型糖尿病患者3个月血糖预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16462/j.cnki.zhjbkz.2019.11.003

基于机器学习算法的2型糖尿病患者3个月血糖预测

引用
目的 评价Logistic回归算法和随机森林算法对2型糖尿病患者3个月后血糖控制情况的预测效果,并探究血糖控制的影响因素.方法 收集顺义、通州区2型糖尿病患者的基线调查和随访信息,以患者3个月后糖化血红蛋白是否大于6.5%作为结局分类变量,使用随机森林算法和Logistic算法建立预测模型,通过受试者工作特征曲线下面积(area under the curve,AUC)、灵敏度等指标比较预测效果.结果 患者血糖控制效果的影响因素有基线空腹血糖(P<0.001)、病程(P<0.001)、吸烟(P=0.026)、静态活动时间(P=0.006)、体重指数(超重P=0.002,肥胖P=0.011)、手环使用(P=0.028)和糖尿病饮食(P=0.002)7个因素;Logistic回归预测模型的AUC为0.738,灵敏度为72.9%,特异度68.1%,准确率71.2%,随机森林模型的AUC为0.756,灵敏度74.5%,特异度69.5%,准确率72.8%.结论 随机森林算法预测效果优于Logistic回归预测模型,可应用于血糖控制效果预测,辅助糖尿病患者的管理.

2型糖尿病、分类预测、随机森林算法、Logistic回归算法

23

R587.1;TP181(内分泌腺疾病及代谢病)

国家自然科学基金71673009

2019-12-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

1313-1317

相关文献
评论
暂无封面信息
查看本期封面目录

中华疾病控制杂志

1674-3679

34-1304/R

23

2019,23(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn