基于K-means动态聚类的鸢乌贼角质颚模式识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19663/j.issn2095-9869.20200315002

基于K-means动态聚类的鸢乌贼角质颚模式识别

引用
本研究采用K-means动态聚类算法,对2014-2019年间采集于西北印度洋、热带东太平洋、中国南海的鸢乌贼(Sthenoteuthis oualaniensis)样本的角质颚进行识别.基于K-means动态聚类算法能够很好地区分来自3个海区的鸢乌贼,对数据进行z-score标准化后,任选2维角质颚形态学参数以曼哈顿距离和欧氏距离进行K-means动态聚类分析,总正确区分率分别为86.7%和88.7%.K-means动态聚类算法对于鸢乌贼角质颚的识别有很大的参考价值,后续改进优化K-means算法使其具有普适性,将会提高鸢乌贼种群的识别能力.

鸢乌贼、角质颚、模式识别、曼哈顿距离、欧氏距离

42

S917.4(水产基础科学)

国家重点研发计划;国家自然科学基金;上海市浦江人才计划;上海市高校特聘教授东方学者岗位计划;上海市科技创新行动计划

2021-08-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

64-72

相关文献
评论
暂无封面信息
查看本期封面目录

渔业科学进展

1000-7075

37-1466/S

42

2021,42(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn