基于支持向量机的新鲜与解冻许氏平鲉(ebastes schlegeli)近红外光谱鉴别技术
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11758/yykxjz.20150620

基于支持向量机的新鲜与解冻许氏平鲉(ebastes schlegeli)近红外光谱鉴别技术

引用
本研究建立了一种近红外光谱技术,用于鉴别鱼类是否经过解冻处理.首先测定了120个样品的近红外光谱,通过主成分分析对原始光谱数据进行降维处理,再结合支持向量机建模进行分类鉴别.对所有建模样品的主成分1和2按得分值绘制得分图,进行分析聚类,并将前10个主成分的得分值作为支持向量机的输入,优化惩罚参数c和核函数参数g,对90个样本训练;用未知的30个样本进行判别验证,建立鉴别鲜、冻许氏平鲉的支持向量机分类模型,预测准确率达100%.研究表明,近红外光谱技术结合主成分分析和支持向量机可以作为一种简便、快速、准确的方法用于判断鱼类是否经过解冻处理.

近红外光谱、许氏平鲉、解冻、主成分分析、支持向量机、鉴别

36

TS254(食品工业)

中央级公益性科研院所基本科研业务费专项资金20603022013018

2016-03-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

134-138

相关文献
评论
暂无封面信息
查看本期封面目录

渔业科学进展

1000-7075

37-1466/S

36

2015,36(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn