基于DRFP网络的无人机对地车辆目标识别算法
针对无人机在复杂战场环境的侦察任务中,目标在视场中尺寸过小、边缘和纹理信息较少所造成的目标识别难题,提出一种新的基于深度学习的单阶段目标识别网络DRFP.DRFP网络以残差结构为骨架,使用特征金字塔结构实现特征融合;其次在损失函数中使用添加了调整因子的交叉熵函数,实现对难样本的重点关注、训练;最后使用高斯型非极大值抑制算法(G-NMS),提高目标密集区检出率.使用无人机航拍图像数据集进行地面车辆目标识别的实验结果表明:所提出的单阶段模型的精度(mAP值)为83.16%,达到了两阶段网络模型的水平;同时,识别速度符合实时性的要求.
小目标识别、无人机图像、深度学习
48
TP391(计算技术、计算机技术)
国防科技创新项目Y8K4160401
2019-11-07(万方平台首次上网日期,不代表论文的发表时间)
共9页
125-133