采用最小二乘支持向量机的部分相依函数型线性模型估计与应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.202108037

采用最小二乘支持向量机的部分相依函数型线性模型估计与应用

引用
提出一种基于无截断Bartlett核函数的重构方法,有效避免长期方差函数估计方法面临的核函数与窗宽选择问题,并将其应用到部分相依函数型线性模型中.利用考虑函数型数据相依性的最小二乘支持向量机对模型进行参数估计,数值模拟结果表明:与未考虑函数型数据相依特征的最小二乘估计方法相比,提出的考虑函数型数据相依性的最小二乘支持向量机估计方法能更稳健地估计向量系数,有效提高样本外的预测精度;将部分相依函数型线性模型应用到上证指数开盘价的预测中,得到较好的预测效果.

部分相依函数型线性模型、长期协方差函数、相依函数型数据、最小二乘支持向量机

43

O212(概率论与数理统计)

国家社会科学基金21AJY001

2022-07-26(万方平台首次上网日期,不代表论文的发表时间)

共9页

544-552

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

43

2022,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn