深度可分离卷积网络的驾驶状态识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.202001010

深度可分离卷积网络的驾驶状态识别算法

引用
针对嵌入式设备内存小及多分类准确率低等导致驾驶员检测问题,提出经过深度可分离卷积网络改进而成的,快速下采样网络(fast downsampling network,MF-Net)驾驶状态识别系统.即将快速下采样策略应用于深度可分离卷积网络,在12层内执行32倍下采样,以有效降低计算成本、增加信息容量并实现性能改进.实验结果表明:与VGG(visual geometry group)和ResNet 50等其他卷积神经网络(CNN)模型相比,所提出的MF-Net模型深度可分离卷积大大减少参数量,快速下采样方案的运用增加了网络的信息容量,不仅模型较小且在驾驶员状态分类方面能够表现出更好的性能.同时,信息容量的增加可以对更多信息进行编码,加深对图像内容的理解,有利于之后的嵌入式系统移植.

驾驶状态、状态特征检测、深度学习、深度卷积、逐点卷积

42

TP391(计算技术、计算机技术)

国家自然科学基金青年科学基金资助项目;福建省厦门市科技局产学研协同创新资助项目;华侨大学研究生科研创新能力培育计划资助项目

2021-04-25(万方平台首次上网日期,不代表论文的发表时间)

共9页

259-267

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn