Slope One-BI算法的改进及其在大数据平台的并行化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.201812074

Slope One-BI算法的改进及其在大数据平台的并行化

引用
针对大数据时代下Slope One算法推荐效率不高的问题,提出结合聚类和动态K近邻的双极Slope One推荐算法.首先,结合Canopy和K-medoids的聚类算法把相似的用户汇聚到一起.然后,在所属聚类中,根据用户之间相似度的具体情况动态地寻找最近邻,并用Slope One-BI算法推荐预测.最后,在Spark平台上实现并行化.在电影数据集上的实验结果表明:基于Spark平台的优化算法与其他协同过滤算法相比,推荐精度具有明显优势.

Slope One-BI算法、聚类、Spark、推荐算法

40

TP391.1(计算技术、计算机技术)

国家自然科学基金青年科学基金资助项目61505059;福建省厦门市科技局产学研协同创新项目3502Z20173046;华侨大学研究生科研创新能力培养计划项目1611422006

2019-12-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

786-792

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

40

2019,40(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn