变步长BLSTM集成学习股票预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.201807050

变步长BLSTM集成学习股票预测

引用
提出采用变步长双向长短期记忆网络(BLSTM)集成学习方法学习历史数据中股票价格变动的规律.针对股票涨跌变化的预测改进均方误差(MSE)损失函数,采用简易的模拟交易盈利评价指标以更好地度量预测模型在金融市场中的期望表现.通过前10~50步长的数据训练BLSTM,预测下1 min各股票的涨跌变化.实验结果验证了不同数据预处理下,改进损失函数的有效性及变步长集成方法相对于单一网络的有效性.

双向长短期记忆网络、集成学习、变步长、股票价格、改进均方误差损失

40

TP183(自动化基础理论)

国家自然科学基金资助项目61271383;华侨大学研究生科研创新能力培育计划项目1611314016

2019-04-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

269-276

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

40

2019,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn