对抗长短时记忆网络的跨语言 文本情感分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.201804046

对抗长短时记忆网络的跨语言 文本情感分类方法

引用
针对文本情感分类任务中,有情感标注的语料在不同语言中的不均衡问题,结合深度学习和迁移学习,提出一种基于对抗长短时记忆网络(ALSTM)的跨语言文本情感分类方法.设置双语各自独立的特征提取网络和共享特征提取网络,把获取到的特征拼接输入到分类器进行分类.在共享特征提取网络中,设置语言分类器,运用对抗思想优化模型,通过投票法决定文本最终的情感极性.实验表明:该方法可以取得跨语言文本情感分类任务更高的准确度.

文本情感、跨语言、对抗、长短时记忆网络、共享特征

40

TP183;TP391.1(自动化基础理论)

国家自然科学基金资助项目61502182;福建省科技计划重点项目2015H0025

2019-04-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

251-256

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

40

2019,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn