采用HOG特征和机器学习的 行人检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.201612041

采用HOG特征和机器学习的 行人检测方法

引用
针对基于方向梯度直方图(HOG)/线性支持向量机(SVM)算法的行人检测方法中存在检测速度慢的问题,提出一种将HOG特征与Adaboost-BP模型相结合的行人检测方法.利用边缘检测技术快速检测出行人候选区域,提取出多尺度多方向的HOG特征,利用Adaboost算法训练多个反向传播神经网络用于构建强分类器,实现对测试样本图像的检测识别.结果表明:文中方法具有更高的检测率、更低的误报率和漏检率,具有较好的检测效果.

行人检测、行人候选区域、梯度方向直方图、反向传播神经网络、Adaboost算法

39

TP391.4(计算技术、计算机技术)

国家自然科学基金青年科学基金资助项目61505059;华侨大学研究生科研创新能力培育计划资助项目1400222001

2018-10-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

768-773

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

39

2018,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn