DE-ICA优化算法在工作模态参数识别的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.201606108

DE-ICA优化算法在工作模态参数识别的应用

引用
提出一种差分进化(DE)改进的独立成分分析(ICA)优化算法,解决工作模态参数识别时容易陷入局部最优,难以识别出高阶模态参数的问题.通过对悬臂梁的ANSYS仿真数据对比可知:相对于传统的ICA方法,结合差分进化算法的ICA识别的模态参数精度更高,且能分离出更多的高阶模态,更适合于高阶模态参数的识别.

参数识别、工作模态、独立成分分析、差分进化、随机寻优策略

39

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61572204,51305142;华侨大学研究生科研创新能力培育计划项目1511314029

2018-06-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

286-292

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

39

2018,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn