KPCA-LSSVM方法在视频时间序列预测中应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11830/ISSN.1000-5013.201708019

KPCA-LSSVM方法在视频时间序列预测中应用

引用
为提高时间序列预测精度及降低预测过程中的计算复杂度,提出一种基于核主成分分析(KPCA)与最小二乘支持向量机(LSSVM)相结合的预测方法.首先,将输入数据通过核方法映射至高维特征空间;然后,在特征空间上提取有效非线性主元;最终,通过LSSVM建立时间序列模型.为验证KPCA-LSSVM方法的有效性,将其应用于交通流及视频流预测中,在同等条件下,与单一的LSSVM及神经网络等预测方法进行比较.实验结果表明:基于KPCA-LSSVM建立的模型具有较好的推广性及较高的辨识精度.

时间序列预测、交通流量、视频流量、核主成分分析、最小二乘支持向量机

39

TP183(自动化基础理论)

国家自然科学基金资助项目51467008

2018-06-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

281-285

相关文献
评论
暂无封面信息
查看本期封面目录

华侨大学学报(自然科学版)

1000-5013

35-1079/N

39

2018,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn