基于KNN回归算法的浙江省温度预报改进研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16765/j.cnki.1673-7148.2022.01.010

基于KNN回归算法的浙江省温度预报改进研究

引用
基于20162018年ECMWF模式温度预报和浙江省72个国家基本站观测资料,根据温度日变化特征,采用K-近邻(KNN)回归算法进行误差订正,改进浙江省172 h精细化温度预报.在KNN回归算法中,将模式起报时刻的温度视作"背景",由模式预报减去起报时刻温度消除"背景"影响,得到温度日变化曲线,通过温度日变化曲线构建差异指标,选取历史相似个例.根据历史相似个例的误差特征,对温度预报进行订正,得到改进的温度预报.检验结果表明,KNN方案的温度预报平均绝对误差较ECMWF和30 d滑动平均误差订正方案(OCF)的分别减小26.2%和5.2%;日最高和最低温度预报误差绝对值小于2℃,准确率较ECMWF的分别提高14.8%和4.3%,较OCF的分别提高3.0%和1.3%.KNN方案对地形复杂地区的温度预报改进效果更为明显,对冷空气活动和夏季高温等天气过程预报改善效果也较稳定.

精细化预报;K-近邻回归;温度日变化;相似个例

45

P456(天气预报)

国家重点研发计划;国家自然科学基金;国家自然科学基金;中国气象局预报员专项;中国气象局预报员专项;广东省自然科学基金;广东省自然科学基金

2022-02-24(万方平台首次上网日期,不代表论文的发表时间)

共9页

81-89

相关文献
评论
暂无封面信息
查看本期封面目录

气象与环境科学

1673-7148

41-1386/P

45

2022,45(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn