慢特征分析法在气象上的应用进展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16765/j.cnki.1673-7148.2016.01.013

慢特征分析法在气象上的应用进展

引用
气候系统具有非平稳特征,根本原因在于其外强迫随时间发生改变,因此外部驱动力的分析对于理解气候系统的动力学特征至关重要,而如何有效提取系统外部驱动信息是一个亟待解决的前沿科学问题.最近几年,在生物神经学领域中应用的一种提取非平稳信号中外强迫信息的方法——慢特征分析法(Slow Feature Analysis,SFA),在气象领域中也得到了初步成功的尝试,结果显示出此方法对气候系统的外强迫信息分析及有关动力学机制的探究有较好的应用前景.本文主要介绍SFA方法的理论思想及实施步骤,并通过一个理想的非平稳时间序列检验其提取外强迫信息的能力,结果证明在衰减的Logistic模型中,可利用SFA算法提取出模型中的外强迫,且与真实外强迫的相关系数可达0.99;此外,还介绍将该方法应用于Arosa臭氧时间序列,分析其提取的外强迫信息的动力学特征;并介绍了在气候时间序列建模中引入外强迫因子的预测效果.

非平稳时间序列、慢特征分析、外强迫信息提取、气候预测

39

P468.0(气候学)

国家自然科学基金项目41275087、41575058;中国科学院“关键技术人才”项目资助

2016-06-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

96-101

相关文献
评论
暂无封面信息
查看本期封面目录

气象与环境科学

1673-7148

41-1386/P

39

2016,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn