10.15933/j.cnki.1004-3268.2022.02.018
无人机飞行高度对冬小麦植株氮积累量预测模型的影响
无人机具有快速、高效、无损获取作物信息的优势,但是飞行高度直接影响作物信息获取效率.通过设置30、60、90 m飞行高度获取冬小麦拔节期、开花期、灌浆期不同分辨率的无人机遥感影像,探索无人机飞行高度对冬小麦植株氮积累量预测模型的影响.首先将不同高度植被指数和纹理特征与冬小麦植株氮积累量进行相关性和共线性分析,筛选出6个植被指数(NDVI、RDVI、RERDVI、GBNDVI、OSAVI、EXG)和4个纹理特征(Green-mean、Green-sm、Red-mean、Red-var).基于筛选出的植被指数和纹理特征,采用偏最小二乘回归(PLSR)和BP神经网络(BPNN)法建立了植被指数、纹理特征与植被指数+纹理特征的冬小麦植株氮积累量预测模型,并将模型在不同高度进行交叉验证,采用决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)指标对模型的稳定性进行分析.结果表明,2种方法均是30 m飞行高度遥感影像提取的植被指数、纹理特征、植被指数+纹理特征建立的预测模型稳定性最好,3种建模信息构建的模型验证时的R2、RMSE、RPD分别为0.57~0.89、1.27~4.16 g/m2、1.67~3.65.BPNN在3种建模信息下构建的模型稳定性整体优于PLSR,验证模型的R2、RPD分别提高0.01~0.39、0.05~1.44,RMSE下降0.08~8.53g/m2.3个高度植被指数、纹理特征、植被指数+纹理特征的植株氮积累量预测模型稳定性顺序:植被指数+纹理特征>植被指数>纹理特征.融合3个飞行高度遥感影像的植被指数、纹理特征、植被指数+纹理特征进行植株氮积累量预测可以提高估算精度,R2、RMSE、RPD分别为0.89~0.93、1.80~2.03g/m2、3.54~4.03.因此,在兼顾效率与精度的情况下,适当提高无人机飞行高度,综合利用植被指数和纹理特征可以对植株氮积累量达到较好的预测效果.
无人机、冬小麦、飞行高度、植株氮积累量、预测模型、植被指数、纹理特征
51
S127(农业物理学)
国家自然科学基金;河南省重点研发与推广专项;河南省重点研发与推广专项;河南省农业科学院杰出青年科技基金项目;河南省农业科学院自主创新项目;河南省科技智库调研课题;河南省农科院农经信息所科技创新领军人才培育计划项目
2022-05-05(万方平台首次上网日期,不代表论文的发表时间)
共12页
147-158