10.12141/j.issn.1000-565X.220545
基于偏移注意力机制和多特征融合的点云分类
三维点云由于受到雾、雨和雪等自然天气条件的影响较小而受到了广泛的关注,在交通、能源和医疗等多个领域得到了广泛的应用,其中点云分类旨在划分三维点云数据的类别,为不同领域决策者提供信息,实现解决方案的制订,对自动驾驶、故障诊断和医学影像分析等具有重要意义.点云分类的应用前景广阔,但目前仍面临着诸多挑战.由于点云的无序性、稀疏性和有限性等特点,传统的图像处理和计算机视觉方法难以直接应用于点云数据分析,直接利用卷积神经网络不能有效提取点云特征,部分模型的特征提取不够充分,局部和全局的信息未能有效的利用,可能丢失重要特征信息.针对上述问题,提出一种实现点云的局部和全局特征相结合的多特征融合模块,并结合偏移注意力机制嵌入多特征融合模块实现较深层次点云特征的提取,同时引入残差结构充分利用浅层提取的特征,防止网络过深导致浅层特征丢失.在ModelNet40和ScanObjectNN分类数据集上进行训练和测试,并对实验进行了消融研究和部分数据可视化.实验结果发现该模型在ModelNet40上的分类总体准确率为93.6%,与PointNet、LDGCNN和PCT等模型相比,分类总体准确率分别提高了4.4、0.7和0.4个百分点;在ScanObjectNN上的分类总体准确率为83.7%,与PointNet++和DGCNN相比,分类总体准确率分别提高了5.8和5.6个百分点,具有较高的准确率和鲁棒性.
点云分类、偏移注意力机制、多特征融合、残差网络
52
TP391(计算技术、计算机技术)
2024-02-23(万方平台首次上网日期,不代表论文的发表时间)
共10页
100-109