AdfNet:一种基于多样化特征的自适应深度伪造检测网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.220825

AdfNet:一种基于多样化特征的自适应深度伪造检测网络

引用
视频篡改造成的危害一直在危及人们的生活,这使深度伪造检测技术逐渐得到广泛关注和发展.然而,目前的检测方法由于使用了不灵活的约束条件,无法有效捕获噪声残差;此外,也忽略了纹理和语义特征之间的关联,以及时序特征对检测性能提升的影响.为了解决上述问题,文中提出了一种用于深度伪造检测的、具有多样化特征的自适应网络(AdfNet),它通过提取语义特征、纹理特征和时序特征帮助分类器判断真伪;探索了自适应纹理噪声提取机制(ATNEM),通过未池化的特征映射与基于频域的通道注意力机制,灵活捕获非固定频段的噪声残差;设计了深层语义分析指导策略(DSAGS),通过空间注意力机制突出篡改痕迹,并引导特征提取器关注焦点区域的深层特征;研究了多尺度时序特征处理方法(MTFPM),利用时序注意力机制给不同视频帧分配权重,捕获被篡改视频中时间序列的差异.实验结果表明,所提出的网络在FaceForensics++(FF++)数据集HQ模式中的ACC值为97.41%,相比当前主流网络有较为明显的性能提升;并且在FF++数据集上保持AUC值为99.80%的同时,在Celeb-DF上AUC值可达到76.41%,具有较强的泛化性.

深度学习、深度伪造检测、多尺度时序特征、注意力机制、自适应网络

51

TP391.4(计算技术、计算机技术)

2023-10-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

82-89

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

51

2023,51(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn