10.12141/j.issn.1000-565X.220626
基于多头卷积和差分自注意力的小样本故障诊断方法
轴承是工业设备中使用最广泛的旋转部件之一,如果轴承在故障状况下运行较长时间,将会造成巨大的经济损失并威胁人身安全,因此,对轴承故障诊断进行研究具有十分重要的意义.基于深度学习的故障诊断技术目前日趋成熟,但在小样本情况下存在过拟合、效果不稳定、准确率不高等问题.为了解决这类问题,文中提出了一种融合多头卷积(Multi-Head Convolution,MC)的数据嵌入新算法和差分自注意力(Differential Self-Attention,DSA)机制的Transformer变种模型MDT(Multi-Head Convolu-tion and Differential Self-Attention Transformer),以实现端到端的小样本故障诊断.MC算法对样本进行多路径一维卷积,由多通道输出将样本从一维扩展到二维,通过多个卷积核尺寸提取出原样本中各个频域的丰富故障信息.相较于Transformer中原有的点积自注意力机制,DSA机制通过差分为每个特征求得对应的注意力权重向量,从而可从样本中提取出更为深层次的故障特征.MDT继承了Transformer对于处理序列数据的强大能力,可从时域信号中提取更为丰富的故障信息,同时避免了小样本模型中常见的过拟合问题.实验结果表明,该方法在每个故障种类仅有100个训练样本的轴承故障诊断任务中能稳定获得99%以上的测试准确率,具有强抗过拟合性和强鲁棒性.
多头卷积、差分自注意力、Transformer变种、小样本、故障诊断
51
TH133.3;TP18
2023-08-07(万方平台首次上网日期,不代表论文的发表时间)
共13页
21-33