基于多头卷积和差分自注意力的小样本故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.220626

基于多头卷积和差分自注意力的小样本故障诊断方法

引用
轴承是工业设备中使用最广泛的旋转部件之一,如果轴承在故障状况下运行较长时间,将会造成巨大的经济损失并威胁人身安全,因此,对轴承故障诊断进行研究具有十分重要的意义.基于深度学习的故障诊断技术目前日趋成熟,但在小样本情况下存在过拟合、效果不稳定、准确率不高等问题.为了解决这类问题,文中提出了一种融合多头卷积(Multi-Head Convolution,MC)的数据嵌入新算法和差分自注意力(Differential Self-Attention,DSA)机制的Transformer变种模型MDT(Multi-Head Convolu-tion and Differential Self-Attention Transformer),以实现端到端的小样本故障诊断.MC算法对样本进行多路径一维卷积,由多通道输出将样本从一维扩展到二维,通过多个卷积核尺寸提取出原样本中各个频域的丰富故障信息.相较于Transformer中原有的点积自注意力机制,DSA机制通过差分为每个特征求得对应的注意力权重向量,从而可从样本中提取出更为深层次的故障特征.MDT继承了Transformer对于处理序列数据的强大能力,可从时域信号中提取更为丰富的故障信息,同时避免了小样本模型中常见的过拟合问题.实验结果表明,该方法在每个故障种类仅有100个训练样本的轴承故障诊断任务中能稳定获得99%以上的测试准确率,具有强抗过拟合性和强鲁棒性.

多头卷积、差分自注意力、Transformer变种、小样本、故障诊断

51

TH133.3;TP18

2023-08-07(万方平台首次上网日期,不代表论文的发表时间)

共13页

21-33

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

51

2023,51(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn