考虑侧向车换道影响的理论和数据组合驱动的车辆跟驰模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.220448

考虑侧向车换道影响的理论和数据组合驱动的车辆跟驰模型

引用
为分析受侧向车辆换道影响下的目标车辆跟驰行为,结合多速度差理论跟驰模型和深度学习方法,提出了一种理论-数据组合驱动跟驰模型.首先考虑了跟驰车辆对于前向车辆和侧向车辆保持安全车距和受车辆速度差影响的特性,提出了双车道多速度差跟驰模型(FS-MAVD模型),并利用差分进化算法进行模型参数标定.构建了CNN-Bi-LSTM-Attention数据驱动车辆跟驰模型,利用卷积神经网络层(CNN)充分提取前向和侧向车辆交通特征,双向长短期记忆网络层(Bi-LSTM)考虑驾驶员记忆效应,注意力机制层(Attention)用于分配模型权重,并基于数据进行驾驶员记忆时长、模型训练批次和训练轮数参数的训练.考虑理论模型广泛适用性和数据驱动模型接近真实值且平滑的特点,采用最优加权法将两种模型进行组合预测.利用无人机拍摄的快速路车辆轨迹数据,建立跟驰行为样本集,对所建模型进行训练和测试,并与LSTM模型、Bi-LSTM模型、CNN-Bi-LSTM-Attention模型、FS-MAVD理论模型的预测效果进行对比,并分别比对不同模型对不同车辆的预测精度和误差.结果表明,本研究构建的组合模型在加速度预测精度达到97.64%,预测均方根误差低至0.027,相比其他模型能更好地预测车辆受侧方车辆换道影响时的加减速情况,更好地分析目标车辆跟驰行为.

交通流、车辆跟驰、数据驱动模型、组合模型、预测、深度学习

51

U491.1(交通工程与公路运输技术管理)

国家自然科学基金;国家重点研发计划

2023-07-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

10-19

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

51

2023,51(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn