基于机器阅读理解的BiLSTM-BiDAF命名实体识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.220013

基于机器阅读理解的BiLSTM-BiDAF命名实体识别

引用
命名实体识别是自然语言处理的一项基本任务,对信息提取、机器翻译等具有重要的意义和价值.目前命名实体识别通常使用序列标注方法对文本中单个句子的实体进行抽取,忽略了句子间的语义信息.基于机器阅读理解的命名实体识别方法借助问题编码了实体类别的重要先验信息,更加容易区分出相似的分类标签,降低了模型学习难度,但仍然只在句子级别建模,忽略了句子间的语义信息,容易造成不同句子中实体标注不一致的问题.为此,文中将句子级别的命名实体识别扩展到文本级别的命名实体识别,提出了一种基于机器阅读理解的BiLSTM-BiDAF命名实体识别模型.首先,为了充分挖掘文本的上下文特征,使用NEZHA获取全文语境信息,并进一步通过BiLSTM提取局部特征,以加强模型对局部依赖信息的捕获能力;然后,引入双向注意力机制学习文本与实体类别之间的语义关联;最后,设计基于门控机制的边界检测器加强实体边界的相关关系,预测出实体在文本中的位置,同时通过建立答案数量检测器,将无答案问题识别出来.在CCKS2020中文电子病历数据集和CMeEE数据集上的实验结果表明,文中构建的模型能有效地识别文本中的命名实体,F1值可分别达到84.76%和57.35%.

双向注意力机制、双向长短时记忆网络、命名实体识别、机器阅读理解、自然语言处理

50

TP18(自动化基础理论)

国家自然科学基金61876010

2023-02-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

80-88

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

50

2022,50(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn