基于锚点图的低秩缺失多视图子空间聚类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.220069

基于锚点图的低秩缺失多视图子空间聚类

引用
经典的多视图聚类任务针对的是完整数据,然而实际任务中受限于信息的获取渠道,某些视图往往含有缺失数据,由此引出了缺失多视图聚类问题.针对此问题,现有的聚类模型大多基于非负矩阵分解或距离构造聚类图,存在着联合优化使解的性能得不到保障以及无法对全局结构进行充分刻画的不足.为了提升聚类图的性能,基于低秩子空间聚类和锚点图,文中提出了一种低秩缺失多视图子空间聚类算法ALIMSC.该算法先通过基于锚点图的缺失多视图聚类(APMC)算法得到数据的基准相似矩阵,将其嵌入低秩子空间聚类模型,通过升维对齐和加权融合的方法得到相似矩阵,再通过让相似矩阵与基准相似矩阵尽可能的一致来求得最终的聚类图.ALIMSC算法通过对每个视图的相似矩阵施加秩最小化约束来刻画高维数据的低维子空间分布,在原有锚点图的基础上进一步强调了数据的子空间算法结构,即聚类图中所体现的块对角性.在多个公开数据集上的实验结果表明,本文算法的聚类性能优于所对比的缺失多视图聚类算法.

聚类算法、低秩表示、缺失多视图聚类、子空间聚类

50

TP391(计算技术、计算机技术)

广东省自然科学基金资助项目2020A1515010699

2023-02-06(万方平台首次上网日期,不代表论文的发表时间)

共11页

60-70

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

50

2022,50(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn