融合多尺度空洞卷积与反卷积的轻量化目标检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.220095

融合多尺度空洞卷积与反卷积的轻量化目标检测

引用
深度神经网络存在目标检测速度慢、参数量大的问题,不适用于算力有限但速度要求较高的移动应用场景.为了提高目标检测的推理速度,有效权衡目标检测任务的精度与速度,文中提出了一种融合多尺度空洞卷积与反卷积的轻量化目标检测网络MDDNet.首先,基于高效的单阶段多目标检测策略设计了轻量的目标检测基础网络,并引入深度可分离卷积,以进一步减少基础网络的参数量,加快图像特征提取的速度;然后在主干网络中添加两条基于多尺度空洞卷积的特征扩展旁路,分别连接在基础网络的最末端和次末端残差层的输出端,将两条旁路的特征输出到预测层进行特征融合,以增强较低层特征图的纹理特征;并且进一步引入了多尺度反卷积模块,连接于深层特征网络层,以增大特征图尺寸,再融合具有不同尺度的上一层的浅层特征图,以获得更多的特征语义信息和细节信息,提高检测精度;最后在预测层基于K均值算法优化先验框参数,使其与目标真实框更匹配,提高目标识别的准确率.实验结果表明:MDDNet的参数量约为7.21×106,平均检测精度在KITTI、Pascal VOC数据集上分别为58.7%、76.0%,推理速度在两个数据集上分别达到55和52 f/s.因此,MDDNet在参数量、检测速度和检测精度上达到了较佳的平衡,可适用于移动端的实时目标检测.

目标检测、空洞卷积、反卷积、多尺度、精度-速度均衡

50

TP391.41(计算技术、计算机技术)

国家自然科学基金;广东省基础与应用基础研究基金资助项目;新型半导体材料与器件广东省重点实验室项目;广州市创新领军人才项目;暨南大学中央高校基本科研业务费专项资金资助项目;暨大-泰斗联合培养研究生基地项目

2023-02-06(万方平台首次上网日期,不代表论文的发表时间)

共8页

41-48

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

50

2022,50(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn