采用Q学习的软件定义网络抗毁技术分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12141/j.issn.1000-565X.210373

采用Q学习的软件定义网络抗毁技术分析

引用
针对软件定义网络(SDN)的链路抗毁问题,为使数据传输具有更好的稳健性,设计了一个基于Q学习算法的抗毁策略.该策略选择以网络中每条链路的中断概率为衡量指标,通过Q学习算法,根据网络情况寻找一条中断概率低的路径作为备份路径,从而在网络传输出现故障时能够自动地切换为备份路径,实现抗毁性能的改善.将Q学习算法与现有的算法进行对比,并分析了各自的优劣性.实验仿真结果表明,相比于蚁群算法,Q学习算法的平均吞吐量可提高15%左右,网络传输的平均中断概率可降低38%;相比于最短路径算法(有备份),平均吞吐量提高16.5%,网络传输的平均中断概率降低43%.由此可见,文中所提基于Q学习的抗毁技术可大大提升SDN网络的抗毁性能.

软件定义网络、Q学习算法、抗毁、链路

50

TN915.1

国家自然科学基金;广东省自然科学基金资助项目;广州市科技计划项目

2022-06-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

65-72

相关文献
评论
暂无封面信息
查看本期封面目录

华南理工大学学报(自然科学版)

1000-565X

44-1251/T

50

2022,50(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn